SHIVALIK

NEET & AIIMS/ IIT JEE-2021-23 (Practice Sheet) 3 (XI Appearing)

TOPIC:- Units, Dimensions and Measuremennt SUB TOPIC:- Dimensional analysis and it's applications.

- 1. From the dimensional consideration, which of the following equation is correct:-

 - (1) $T = 2\pi \sqrt{\frac{R^3}{GM}}$ (2) $T = 2\pi \sqrt{\frac{GM}{R^3}}$
 - (3) $T = 2\pi \sqrt{\frac{GM}{R^2}}$ (4) $T = 2\pi \sqrt{\frac{R^2}{GM}}$
- 2. The velocity v (in cm/sec) of a particle is given in terms of time t (in sec) by the relation $v = at + \frac{b}{t+c}$; the dimensions of a,b and c are :-
 - (1) $a = [L^{-2}], b = [T], c = [LT^{2}]$
 - (2) $a = [LT^2], b = [LT], c = [L]$
 - (3) $a = [LT^{-2}], b = [L], c = [T]$
 - (4) $a = [L], b = [LT], c = [T^2]$
- 3. From the dimensional consideration, which of the following equation is wrong.
 - (1) v = u + at (2) $s = ut + \frac{1}{2}at^2$

 - (3) $v^2 u^2 = 2at$ (4) $v^2 u^2 = 2as$
- 4. Power P is reated to distance x and time t as p = dimensional formula of bis...
 - $(1) [M^0LT^{-2}]$
- (2) $[M^0L^2T^2]$
- (3) $[M^0L^2T^{-2}]$
- (4) $[M^0L^2T^0]$
- 5. In the same equation, the dimensional formula of a is:-
 - (1) $[M^{-1}L^{0}T^{2}]$ (2) $[ML^{0}T^{-2}]$ (3) $[ML^{-1}T^{-2}]$ (4) $[M^{-1}L^{1}T^{-2}]$
- 6. Force = $\left(\frac{\alpha}{density + \beta^3}\right)$, What are the dimensions of α, β ?
 - (1) $[ML^{-2}T^{-2}]$, $[ML^{-Y3}]$ (2) $[M^2L^4T^{-2}]$, $[M^{1/3}L^{-1}]$
 - (3) $[M^2L^{-2}T^{-2}]$, $[M^{1/3}L^{-1}]$ (4) $[M^2L^{-2}T^{-2}]$, $[ML^{-3}]$
- 7. The distance travelled by a body in nth second is given by $S_{nth} = u + \frac{a}{2}$ (2n-1), where u is initial velocity and a is acceleration. The dimension of S_{nth} are.
 - (1) [L]
- $(2) [LT^{-1}]$
- $(3) [LT^{-2}]$
- $(4) [L^{-1}T]$

- 1. विमीय विधि से, निम्नलिखित में से कौनसी समीकरण सही
- (1) $T = 2\pi \sqrt{\frac{R^3}{GM}}$ (2) $T = 2\pi \sqrt{\frac{GM}{R^3}}$ (3) $T = 2\pi \sqrt{\frac{GM}{R^2}}$ (4) $T = 2\pi \sqrt{\frac{R^2}{GM}}$
- 2. एक कण का वेग V (सेमी. / सैकण्ड) समय t (सैकण्ड में) के पदो में निम्न सूत्र द्वारा व्यक्त किया गया है $v = at + \frac{b}{t+c}$; a,b व cकी विमाये होंगी:-
 - (1) $a = [L^{-2}], b = [T], c = [LT^{2}]$
 - (2) $a = [LT^2], b = [LT], c = [L]$
 - (3) $a = [LT^{-2}], b = [L], c = [T]$
 - (4) $a = [L], b = [LT], c = [T^2]$
- 3. विमिय सिद्धान्त के अनुसार निम्न में से कौनसा समीकरण गलत

 - (1) v = u + at (2) $s = ut + \frac{1}{2}at^2$
 - (3) $v^2 u^2 = 2at$ (4) $v^2 u^2 = 2as$
- 4. दूरी (x) तथा समय (t) के पदो में शक्ति (P) का सूत्र है। p = 1 $\left(\frac{b-x^2}{at}\right)$ b का विमीय सूत्र है :-
 - $(1) [M^0LT^{-2}]$
- (2) $[M^0L^2T^2]$
- (3) $[M^0L^2T^{-2}]$
- $(4) [M^0L^2T^0]$
- 5. इसी समीकरण में a का विमीय सूत्र है :-
 - (1) $[M^{-1}L^0T^2]$ (2) $[ML^0T^{-2}]$
 - (3) $[ML^{-1}T^{-2}]$
- (4) $[M^{-1}L^{1}T^{-2}]$
- 6. बल = $\left(\frac{\alpha}{density + \beta^3}\right)$, α , β की विमाएँ क्या है ?
 - (1) $[ML^{-2}T^{-2}]$, $[ML^{-Y3}]$ (2) $[M^2L^4T^{-2}]$, $[M^{1/3}L^{-1}]$
 - (3) $[M^2L^{-2}T^{-2}]$, $[M^{1/3},L^{-1}]$ (4) $[M^2L^{-2}T^{-2}]$, $[ML^{-3}]$
- 7. n वें सैकण्ड में वस्तु द्वारा तय की गई दूरी है $S_{\rm nth} = u + \frac{a}{2} (2n-1)$, जहाँ u प्रारंभिक वेग तथा a त्वरण है | $S_{\rm nth}$ की विमा है :-
 - (1) [L]
- $(2) [LT^{-1}]$
- $(3) [LT^{-2}]$
- $(4) [L^{-1}T]$

- 8. If force (F), Velocity (V) and time (T) are taken as fundamental units, then the dimension of mass are :-
 - (1) [FVT⁻¹]
- (2) [FVT⁻²]
- $(3) [FV^{-1}T^{-1}]$
- $(4) [FV^{-1}T]$
- 9. Given that v is speed, r is the radius and g is the acceleration due to gravity. Which of the following is dimensionless:-
 - (1) v^2/rg
- (2) $v^2 r/g$ (3) $v V^2 g/r$ (4) $v^2 rg$
- 10. The speed of light (c), gravitational constant (G) and Planck's constant (h) are taken as the fundamental units in a system.
 - (1) $[G^{1/2}h^{1/2}C^{-5/2}]$
- (2) $[G^{-1}h^{1/2}C^{1/2}]$
- (3) $[G^{1/2}h^{1/2}C^{-3/2}]$
- (4) $[G^{1/2}h^{1/2}C^{1/2}]$
- 11. From the dimensional consideration, which of the following equation is correct :- (a→ Maximum displacement of particle, $v \rightarrow Velocity$ of particle, $T \rightarrow$ Time period]
 - (1) y = a sinvt
 - (2) $y = asin(\frac{2\pi t}{r})$
 - (3) $y = (\frac{a}{r}) \sin t/a$
 - (4) $y = (a/\sqrt{2}) \left[\sin\left(\frac{2\pi t}{a}\right) + \cos\left(\frac{2\pi t}{T}\right) \right]$
- 12. Density of a liquid in CGS system in 0.625gm/cm³. What is its magnitude in SI system?
- (2) 0.0625 (3) 0.00625 (4) 625
- 13. The dimension of resistivity in term of M,L,T and Q where Q stands for the dimension of charge, is:-
- (1) [ML³T⁻¹Q⁻²] (2) [ML³T⁻²Q⁻¹] (3) [ML²T⁻¹Q⁻¹] (4) [MLT⁻¹Q⁻¹]
- 14. The equation of a wave is given by :- $y = A \sin \omega$ $(\frac{x}{2} - k)$. Where ω is the angular velocity and v is he linear velocity. The dimension of K is:-
 - (1)_[LT]
- (2) [T]
- $(3) [T^{-1}]$
- $(4) [T^{-2}]$
- 15. The velocity of a freely falling body changes as g^ph^q. Where g is acceleration due to gravity and h is the height. The value of p and q are:-
 - $(1) 1, \frac{1}{2}$
- $(2) \frac{1}{2}, \frac{1}{2}$ $(3) \frac{1}{2}, 1$
- (4) 1, 1
- 16. The period of a body under SHM i.e. presented by T =P^aD^bS^c, Where P is pressure, D is density and S is surface

- 8. यदि बल, वेग तथा समय मूल मात्रक होते तो द्रव्यमान का विमीय सूत्र होता है :-
 - (1) [FVT⁻¹]
- $(2) [FVT^{-2}]$
- $(3) [FV^{-1}T^{-1}]$
- $(4) [FV^{-1}T]$
- 9. यदि v =चाल, r =त्रिज्या तथा g गुरूत्वीय त्वरण हो तो विमाहीन राशि होगी।
 - (1) v^2/rg
- (2) $v^2 r/g$
- (3) $v^2 g/r$
- 10. यदि प्रकाश का वेग (c), गुरूत्वीय नियतांक (G) तथा प्लांक नियतांक (h) मूल मात्रक लिये जाते है तो इस नई पद्धति में समय का विमीय सूत्र होगा :
 - (1) $[G^{1/2}h^{1/2}C^{-5/2}]$ (2) $[G^{-1}h^{1/2}C^{1/2}]$
 - (3) $[G^{1/2}h^{1/2}C^{-3/2}]$
- (4) $[G^{1/2}h^{1/2}C^{1/2}]$
- 11. विमीय विधि से, निम्नलिखित में से कौनसा समीकरण सही है :-यहाँ (a→ कण का अधिकतम विस्थापन, V→ कण की चाल, T > गति का आवर्तकाल]
 - (1) y = a sinvt
 - (2) $y = asin\left(\frac{2\pi t}{r}\right)$
 - (3) $y = (\frac{a}{T}) \sin t/a$
 - (4) $y = (a/\sqrt{2}) [\sin(\frac{2\pi t}{a}) + \cos(\frac{2\pi t}{T})]$
- 12. CGS पद्धति में द्रव का घनत्व 0.625ग्राम/सेमी³. है। SI पद्धति में इसका परिमाण होगा ?
 - (1) 0.625
- (2) 0.0625
- (3) 0.00625 (4) 625
- 13. प्रतिरोधकता की विमाये M,L,T तथा Q के पदों में होगी। [यहाँ पर Q आवेश की विमा को दर्शाता है।]
 - (2) $[ML^3T^{-1}Q^{-2}]$
- (2) $[ML^3T^{-2}O^{-1}]$
- (3) $[ML^2T^{-1}Q^{-1}]$
- $(4) [MLT^{-1}Q^{-1}]$
- 14. एक तरंग का समीकरण $y = A \sin \omega$ ($\frac{x}{v} k$). से दिया जाता है। जहाँ ω कोणीय वेग तथा v रेखीय वेग है। K की विमा है।
 - (1) [LT]
- (2)[T]
- $(3) [T^{-1}]$
- $(4) [T^{-2}]$
- 15. मुक्त रूप से गिरती हुई वस्तु का वेग gPhq से परिवार्तित होता है, जहाँ g गुरुत्वीय त्वरण तथा h ऊँचाई है तो p और q के मान होंगे :-
 - $(2) 1, \frac{1}{2}$
- $(2) \frac{1}{2}, \frac{1}{2}$
- $(3) \frac{1}{2}, 1$
- - (4) 1, 1
- 16. सरल आवर्त गति करती किसी वस्त का आवर्तकाल T = $P^aD^bS^c$ से प्रकट किया जाता है। यहाँ P =दाब, D =घनत्व और

tension. The value of a,b and c are.

- $(1) \frac{-3}{2}, \frac{1}{2}, \frac{1}{2}, (2) -1, -2, 3 \quad (3) \frac{1}{2}, \frac{-3}{2}, \frac{1}{2} \quad (4) 1, 2, \frac{1}{3}$
- 17. Conversion of Units: $-1 \text{kgm}^2 \text{s}^{-2} = \underline{\qquad} \text{gcm}^2 \text{s}^{-2}$.
 - $(1) 10^3$
- $(2) 10^2 \qquad (3) 10^7 \qquad (4) 10^{10}$
- 18. $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2} = \underline{\qquad} \text{Cm}^3 \text{s}^{-2} \text{gm}^{-1}.$

 - (1) 6.67×10^{-8} (2) 6.67×10^{-15}
 - (3) 6.67×10^{-10} (4) 6.67×10^{-5}
- 19. If the time period (T) of vibration of a liquid drop depends on surface tension (S), radius (r) of the drop and density (ρ) of the liquid, then the expression of T is.

 - (1) $T = K\sqrt{\rho r^3/s}$ (2) $T = K\sqrt{\rho^{1/2} r^3 s}$
 - (3) $T = K \sqrt{\rho r^3/s^{1/2}}$ (4) None of theses
- 20. Position of a body with acceleration 'a' is given by x =Ka^mtⁿ, here t is time. Find dimension of m and n?
 - (1) m=1,n=1
- (2) m=1, n=2
- (3) m=2, n=1
- (4) m=2, n=2

- S =पृष्ठ तनाव है तो a,b,c के मान होंगे।
- $(1) \frac{-3}{2}$, $\frac{1}{2}$, $\frac{1}$
- 17. मात्रक का रूपान्तरण:- $1 \text{kgm}^2 \text{s}^{-2} = \underline{\qquad} \text{gcm}^2 \text{s}^{-2}$.

- (1) 10^3 (2) 10^2 (3) 10^7 (4) 10^{10}
- 18. $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2} = \underline{\qquad} \text{ Cm}^3 \text{s}^{-2} \text{gm}^{-1}.$

 - (1) 6.67×10^{-8} (2) 6.67×10^{-15}
 - (3) 6.67×10^{-10} (4) 6.67×10^{-5}
- 19. यदि किस द्रव की बूंद के कम्पन का आवर्तकाल (T), बूंद के पृष्ठ तनाव (S), त्रिज्या (r) एवं घनत्व (ρ) पर निर्भर करता हो तो आवर्तकाल T का व्यंजक है :-

 - (1) $T = K\sqrt{\rho r^3/s}$ (2) $T = K\sqrt{\rho^{1/2} r^3 s}$

 - (3) $T = K \sqrt{\rho r^3/s^{1/2}}$ (4) None of theses
- 20. किसी वस्तु की स्थिति $x = Ka^m t^n$, उसका त्वरण a है यहाँ tसमय है। m तथा n की विमा ज्ञात कीजिए।
 - (1) m=1,n=1
- (2) m=1, n=2
- (3) m=2, n=1
- (4) m=2, n=2

NEET & AIIMS/ IIT JEE-2021-23

(Practice Sheet)3 (XI Appearing)

ANSWER SHEET

Question	1	2	3	4	5
Answer	1	3	3	4	1
Question	6	7	8	9	10
Answer	3	2	4	1	1
Question	11	12	13	14	15
Answer	2	4	1	2	2
Question	16	17	18	19	20
Answer	1	3	1	1	2